Get degree ideas using our A level explorer tool

Mechanical Engineering / Biomedical Engineering

Entry requirements


A level

A*,A,A

A*AA including mathematics (minimum grade A) and physics (minimum grade A), with a pass in the physics Practical (where it is separately endorsed). If you are taking an EPQ in addition to 3 A levels, you will receive the following offer in addition to the standard A level offer: AAA including mathematics and physics, with a pass in the physics Practical (where it is separately endorsed) plus grade A in the EPQ. We are committed to ensuring that all applicants with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise an applicant's potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme. Applicants who have not studied the required subjects at A-level can apply for the Engineering/Physics/Mathematics Foundation Year.

AQA Level 3 Technical Level (720 glh)

DD-D*D

Typical entry criteria will be to achieve Grade A* in A-level Maths plus DD in the Tech Level or Grade A in A-level Maths plus D*D in the Tech Level Accepted subjects: Engineering. Must be offered in combination with A-level Mathematics and units M1 and M2 must be taken. Applicants who have not studied mathematics at A-level can apply for the Engineering/Physics/Mathematics Foundation Year.

Cambridge International Pre-U Certificate - Principal

D2,D3,D3

D2, D3, D3 in three Principal subjects including mathematics (minimum grade D3) and physics (minimum grade D3) Applicants who have not studied the required subjects can apply for the Engineering/Physics/Mathematics Foundation Year.

Extended Project

A

If you are taking an EPQ in addition to 3 A levels, you will receive the following offer in addition to the standard A level offer: AAA including mathematics and physics, with a pass in the physics Practical (where it is separately endorsed) plus grade A in the EPQ. Applicants who have not studied the required subjects at A-level can apply for the Engineering/Physics/Mathematics Foundation Year.

GCSE/National 4/National 5

Applicants must hold GCSE English language (or GCSE English) (minimum grade 4/C) and mathematics (minimum grade 4/C)

International Baccalaureate Diploma Programme

38

Pass, with 38 points overall with 19 points required at Higher Level, including 6 at Higher Level in Physics and 6 at Higher Level in Mathematics (Analysis and Approaches) or 7 at Higher Level in Mathematics (Applications and Interpretation). Applicants who have not studied mathematics and/or physics at Higher Level can apply for the Engineering/Physics/Mathematics Foundation Year.

Leaving Certificate - Higher Level (Ireland) (first awarded in 2017)

H1,H1,H1,H2,H2,H2

H1 H1 H1 H2 H2 H2 including mathematics, applied mathematics and physics

OCR Cambridge Technical Diploma

DD-D*D

Typical entry criteria will be to achieve Grade A* in A-level Maths plus DD in the Technical Diploma or Grade A in A-level Maths plus D*D in the Technical Diploma Accepted subjects: Engineering Applicants who have not studied mathematics at A-level can apply for the Engineering/Physics/Mathematics Foundation Year.

OCR Cambridge Technical Extended Certificate

D-D*

Typical entry criteria will be to achieve a grades A*A in Maths and Physics at A-level plus D in the Technical Extended Certificate or grades AA in Maths and Physics at A-level plus D* in the Technical Extended Certificate. A pass in the physics Practical is required where it is separately endorsed. Applicants who have not studied the required subjects at A-level can apply for the Engineering/Physics/Mathematics Foundation Year.

Pearson BTEC Level 3 National Extended Certificate (first teaching from September 2016)

D-D*

D in the BTEC National Extended Certificate plus grades A*A in A-level mathematics and physics (the A* can be in either subject), with a pass in the physics Practical (where it is separately endorsed) or D* in the BTEC National Extended Certificate plus grades AA in A-level mathematics and physics, with a pass in the physics Practical (where it is separately endorsed). Applicants who have not studied the required subjects at A-level can apply for the Engineering/Physics/Mathematics Foundation Year.

Pearson BTEC Subsidiary Diploma (QCF)

D-D*

D in the BTEC Subsidiary Diploma plus grades A*A in A-level mathematics and physics (the A* can be in either subject), with a pass in the physics Practical (where it is separately endorsed) or D* in the BTEC Subsidiary Diploma plus grades AA in A-level mathematics and physics, with a pass in the physics Practical (where it is separately endorsed). Applicants who have not studied the required subjects at A-level can apply for the Engineering/Physics/Mathematics Foundation Year.

Offers will be based on exams being taken at the end of S6. Subjects taken and qualifications achieved in S5 will be reviewed. Careful consideration will be given to an individual’s academic achievement, taking in to account the context and circumstances of their pre-university education. Please see the University of Southampton’s Curriculum for Excellence Scotland Statement (PDF) for further information. Applicants are advised to contact their Faculty Admissions Office for more information.

Offers will be based on exams being taken at the end of S6. Subjects taken and qualifications achieved in S5 will be reviewed. Careful consideration will be given to an individual’s academic achievement, taking in to account the context and circumstances of their pre-university education. Please see the University of Southampton’s Curriculum for Excellence Scotland Statement (PDF) for further information. Applicants are advised to contact their Faculty Admissions Office for more information.

Welsh Baccalaureate - Advanced Skills Challenge Certificate (first teaching September 2015)

A

A*AA including mathematics (minimum grade A) and physics (minimum grade A), with a pass in the physics Practical (where it is separately endorsed) or A*A from two A levels including mathematics and physics (the A* can be in either subject), with a pass in the physics Practical (where it is separately endorsed) and A from the Advanced Welsh Baccalaureate Skills Challenge Certificate. Applicants who have not studied the required subjects at A-level can apply for the Engineering/Physics/Mathematics Foundation Year.

UCAS Tariff

152

We've calculated how many Ucas points you'll need for this course.

About this course


Course option

4years

Full-time | 2024

Subjects

Mechanical engineering

Bioengineering

This integrated masters degree blends engineering with biological and medical aspects of healthcare technologies. The first two years are the same across our Mechanical Engineering degrees and focus on the essential principles of mechanical engineering, as well as law and management, systems design, and modelling and computing, in order to take a product from initial concept to the marketplace.

During your third and fourth years you will focus on the mechanics of the human body, medical technologies and human factors in engineering. In your third year, you will also carry out an individual project, bringing together the concepts and skills you have learned.

During your fourth year, you will take advanced and specialised modules and participate in a group design project, applying your engineering knowledge to solve a real-world problem.

You will have access to extensive facilities, which include the largest wind tunnel in any UK university, a high-resolution 3D imaging centre, dedicated student design studios and workshops, and a materials and structures research facility in our new National Infrastructure Laboratory.

Our courses are fully accredited by the Institution of Mechanical Engineers and offer a route to chartered status.

Modules

Typical modules include:

Year one: Engineering Design; Electrical and Electronic Systems; Mathematics; Mechanics, Structures and Materials; Mechanical Systems Analysis; Thermofluids.

Year two: Engineering Management and Law; Fluid Mechanics; Materials and Structures; Mathematics; Mechanics, Machines and Vibration; Systems Design and Computing; Thermodynamics; Electronics and Control.

Year three: Individual Project; Biomaterials; Engineering Design with Management; Finite Element Analysis in Solid Mechanics; Heat Transfer and Applications; Manufacturing and Materials; and Orthopaedic Biomechanics.

Year four: Group Design Project; Biomedical Implants and Devices; Computational Methods in Biomedical Engineering Design; Introduction to Biomedical Engineering; Materials, Manufacturing, and Supply Chains; plus module options to deepen your knowledge.

Assessment methods

Testing is conducted through a combination of unseen written examinations and assessed coursework in the form of problem-solving exercises, laboratory reports, design exercises, essays, and individual and group projects. Experimental, research and design skills are assessed through laboratory reports, coursework exercises and oral presentations.

Tuition fees

Select where you currently live to see what you'll pay:

Channel Islands
£9,250
per year
England
£9,250
per year
EU
£27,400
per year
International
£27,400
per year
Northern Ireland
£9,250
per year
Republic of Ireland
£9,250
per year
Scotland
£9,250
per year
Wales
£9,250
per year

The Uni


Course location:

Main Site - Highfield Campus

Department:

Mechanical Engineering

Read full university profile

What students say


We've crunched the numbers to see if overall student satisfaction here is high, medium or low compared to students studying this subject(s) at other universities.

83%
Mechanical engineering

How do students rate their degree experience?

The stats below relate to the general subject area/s at this university, not this specific course. We show this where there isn’t enough data about the course, or where this is the most detailed info available to us.

Mechanical engineering

Teaching and learning

71%
Staff make the subject interesting
85%
Staff are good at explaining things
79%
Ideas and concepts are explored in-depth
71%
Opportunities to apply what I've learned

Assessment and feedback

Feedback on work has been timely
Feedback on work has been helpful
Staff are contactable when needed
Good advice available when making study choices

Resources and organisation

82%
Library resources
79%
IT resources
96%
Course specific equipment and facilities
76%
Course is well organised and has run smoothly

Student voice

Staff value students' opinions
Feel part of a community on my course

Who studies this subject and how do they get on?

74%
UK students
26%
International students
84%
Male students
16%
Female students
77%
2:1 or above
7%
First year drop out rate

Most popular A-Levels studied (and grade achieved)

A
A
A

Bioengineering, medical and biomedical engineering

Sorry, no information to show

This is usually because there were too few respondents in the data we receive to be able to provide results about the subject at this university.


Who studies this subject and how do they get on?

73%
UK students
27%
International students
83%
Male students
17%
Female students
82%
2:1 or above
8%
First year drop out rate

Most popular A-Levels studied (and grade achieved)

A
A
A

After graduation


The stats in this section relate to the general subject area/s at this university – not this specific course. We show this where there isn't enough data about the course, or where this is the most detailed info available to us.

Mechanical engineering

What are graduates doing after six months?

This is what graduates told us they were doing (and earning), shortly after completing their course. We've crunched the numbers to show you if these immediate prospects are high, medium or low, compared to those studying this subject/s at other universities.

£27,000
med
Average annual salary
96%
med
Employed or in further education
85%
med
Employed in a role where degree was essential or beneficial

Top job areas of graduates

64%
Engineering professionals
7%
Teaching and educational professionals
6%
Information technology and telecommunications professionals

We're short of engineers in a lot of areas and mechanical engineering is no exception. Mechanical engineers are in demand across multiple industries, with vehicle manufacturing most popular, with roles especially common in design and manufacturing. Other important sectors include aerospace, the oil and gas industry, consultancy and defence. Jobs are all around the country, with London, the Midlands, Scotland and the South East the most likely places for a new mechanical engineer to find work at the moment, and starting salaries are good. Although large employers are much the most likely place to get work, some of the most challenging, cutting edge jobs are with small niche engineering firms, so keep your eyes peeled if you want something a little different. Bear in mind that a lot of courses are four years long, and lead to an MEng qualification — this is necessary if you want to become a Chartered Engineer.

Bioengineering, medical and biomedical engineering

What are graduates doing after six months?

This is what graduates told us they were doing (and earning), shortly after completing their course. We've crunched the numbers to show you if these immediate prospects are high, medium or low, compared to those studying this subject/s at other universities.

£27,000
med
Average annual salary
94%
med
Employed or in further education

Top job areas of graduates

56%
Engineering professionals
9%
Information technology and telecommunications professionals
5%
Business, research and administrative professionals

What about your long term prospects?

Looking further ahead, below is a rough guide for what graduates went on to earn.

Mechanical engineering

The graph shows median earnings of graduates who achieved a degree in this subject area one, three and five years after graduating from here.

£29k

£29k

£34k

£34k

£41k

£41k

Note: this data only looks at employees (and not those who are self-employed or also studying) and covers a broad sample of graduates and the various paths they've taken, which might not always be a direct result of their degree.

Bioengineering, medical and biomedical engineering

The graph shows median earnings of graduates who achieved a degree in this subject area one, three and five years after graduating from here.

£29k

£29k

£34k

£34k

£41k

£41k

Note: this data only looks at employees (and not those who are self-employed or also studying) and covers a broad sample of graduates and the various paths they've taken, which might not always be a direct result of their degree.

Share this page

This is what the university has told Ucas about the criteria they expect applicants to satisfy; some may be compulsory, others may be preferable.

Have a question about this info? Learn more here

This is the percentage of applicants to this course who received an offer last year, through Ucas.

Have a question about this info? Learn more here

This is what the university has told Ucas about the course. Use it to get a quick idea about what makes it unique compared to similar courses, elsewhere.

Have a question about this info? Learn more here

Course location and department:

This is what the university has told Ucas about the course. Use it to get a quick idea about what makes it unique compared to similar courses, elsewhere.

Have a question about this info? Learn more here

Teaching Excellence Framework (TEF):

We've received this information from the Department for Education, via Ucas. This is how the university as a whole has been rated for its quality of teaching: gold silver or bronze. Note, not all universities have taken part in the TEF.

Have a question about this info? Learn more here

This information comes from the National Student Survey, an annual student survey of final-year students. You can use this to see how satisfied students studying this subject area at this university, are (not the individual course).

This is the percentage of final-year students at this university who were "definitely" or "mostly" satisfied with their course. We've analysed this figure against other universities so you can see whether this is high, medium or low.

Have a question about this info? Learn more here

This information is from the Higher Education Statistics Agency (HESA), for undergraduate students only.

You can use this to get an idea of who you might share a lecture with and how they progressed in this subject, here. It's also worth comparing typical A-level subjects and grades students achieved with the current course entry requirements; similarities or differences here could indicate how flexible (or not) a university might be.

Have a question about this info? Learn more here

Post-six month graduation stats:

This is from the Destinations of Leavers from Higher Education Survey, based on responses from graduates who studied the same subject area here.

It offers a snapshot of what grads went on to do six months later, what they were earning on average, and whether they felt their degree helped them obtain a 'graduate role'. We calculate a mean rating to indicate if this is high, medium or low compared to other universities.

Have a question about this info? Learn more here

Graduate field commentary:

The Higher Education Careers Services Unit have provided some further context for all graduates in this subject area, including details that numbers alone might not show

Have a question about this info? Learn more here

The Longitudinal Educational Outcomes dataset combines HRMC earnings data with student records from the Higher Education Statistics Agency.

While there are lots of factors at play when it comes to your future earnings, use this as a rough timeline of what graduates in this subject area were earning on average one, three and five years later. Can you see a steady increase in salary, or did grads need some experience under their belt before seeing a nice bump up in their pay packet?

Have a question about this info? Learn more here